Case 1:
Breakage of a radio cover at low temperatures
A radio cover incorporated in an automotive dashboard broke for unknown reasons. One could assume that the processed material may have been contaminated with other substances or that a wrong polymer composition was used to produce the broken part. Therefore, in a first step, measurements with a NETZSCH DSC 214 Polyma were conducted to find the cause of failure. The method is especially suitable for a first assessment of the reason for failure as it gives many insights into the material’s properties with relatively little effort. Both a sample from a good part and a sample from the poor part were subjected to a temperature program in an N2 atmosphere at a heating rate of 10 K/min. Figure 1 shows the measurement results. Above ambient, the two samples show the same behavior. Glass transition temperatures and melting peaks occur at the same temperature. However, the good sample has a second glass transition at about – 58°C that is missing in the poor sample. The second glass transition of the good sample can be traced back to an elastomeric component, which provides better cold flexibility and impact strength. Due to the lack of this component in the sample of the poor part, the radio cover did not have the cold flexibility it should have had and consequently, broke at low temperatures.
Case 2:
Breakage of a thermoplastic part under stress
In polymers, intensive processes of substance transfer can occur. Gases, organic solvents, colorings and also moisture can diffuse into or through polymers. However, absorbed moisture changes the properties of polymers. This also includes the mechanical properties of a polymer, e.g., the modulus, which is a measure of the resistance to elastic deformation. The failure of a thermoplastic part under stress can also be related to the uptake of moisture into the material. A dynamic mechanical analyzer equipped with a humidity generator can help determine the mechanical properties at different levels of humidity. In figure 2, a polyamide 6 (PA) sample was measured at a frequency of 1 Hz and a temperature of 40°C in tension mode. The relative humidity was stepwise increased from 0% to 75% over time. The stiffness (described by the storage modulus E’) of the material was measured in these relative humidity steps. It is clearly visible that the stiffness of the material decreases with the increase of the relative humidity. At 50% relative humidity, the storage modulus decreased by approximately 74%.