Reduce Scrap Production with Thermal Analysis

Reduce Scrap Production with Thermal Analysis

Bringing cost, material, production process and quality successfully together is one of the key objectives in the injection molding industry. If the production process is not correct or if the material does not adhere to the specified requirements, low quality and thus scrap production is the consequence. Ideally, all of these four factors should be able to be managed in order to avoid scrap production. Thermal analysis methods offer valued approaches.

Bringing cost, material, production process and quality successfully together is one of the key objectives in the injection molding industry. If the production process is not correct or if the material does not adhere to the specified requirements, low quality and thus scrap production is the consequence.  

Every faulty part that does not make it through quality control is tied to extra cost for the company. This is a huge disadvantage for companies competing in the global automotive industry that underlies strict cost pressure. 

Ideally, all of these four factors should be able to be managed in order to avoid scrap production. Thermal analysis methods offer a valued approach to evade costs.

Early-warninganalyticsfor potential failures: Control your incoming material 

One approach to reduce scrap production resulting from material-related problems can be to control the incoming material. This can then ensure that the properties of the material are correct and that there is no deviation from the specifications agreed upon.  

Differential scanning calorimetry determines physical transformations, e.g., phase transitions such as glass transition temperatures, melting peaks, crystallization temperature. Read more on the method here! 

An application example for the reduction of scrap could be: 

Once the material for a thermoplastic part or component has been selected, the required specification as well as a fixed deviation from the ideal material are determined. New material that is delivered to the company is then analyzed to see if the material adheres to the defined range of property variations. This comparative and proactive analysis is efficiently done with the right software features.  

Learn how to integrate the Proteus® software features into your incoming goods inspection! 

Optimizing reactive injection molding with in-line sensors

Injection molding with thermoplastic materials has been done for many decades. Thermosets open a new chapter of high-performance parts regarding their mechanical strength. However, producing parts from thermosets is tied to a lot of influences on the production process. For instance:  

  • changes in the material behavior due to different transportationenvironments, 
  • storage on thecustomer’ssite, 
  • machinefailures like pressureloss,
  • temperaturedeviationsinsidethemoldbetweenthefirst and the last componentofone batchor due todefects in theheatingofthemold. 

To overcome these hurdles and to produce good parts, there is a huge amount of safety time during manufacturing. As a result, the full potential of manufacturing processes can often not be fully exploited. NETZSCH and KISTLER partnered up to advance production to a level that allows robust manufacturing while enabling a maximum in cycle time reduction at the same time.

 Continuereadingthearticlehere! 

 

How do you like this post?
BadFairGoodGreat!Excellent! (No Ratings Yet)
Loading...

Leave a Comment