Why the Effect of Anisotropic Fillers on Thermal Expansion is Process-Dependent

Fillers are added to a polymer matrix to improve the mechanical performance of the finished product. The orientation of such fillers depends on the processing conditions. Learn how the overall content, shape and orientation of copper fibers influence the coefficient of thermal volume expansion.

Read more

Material Science in Additive Manufacturing: Warpage Prediction of PBF Parts Using CTE

Residual stress can lead to warpage of a 3D-printed part. Both Dynamic Mechanical and Thermomechanical Analysis are capable to estimate warpage. In this video, Dr. Natalie Rudolph explains, how the coefficient of thermal expansion (CTE), measured with Thermomechanical Analysis, can be used to predict and calculate warpage.

Read more

One Click AutoEvaluation for Dilatometer Signals (dL) Improved

AutoEvaluation is an intelligent software algorithm and part of the NETZSCH Proteus® software, which automatically and autonomously evaluates thermo-analytical measurement curves. It has already been introduced and successfully applied for Differential Scanning Calorimetry and Thermogravimetric Analysis and is also available for dL signals as generated by dilatometers (DIL) and thermomechanical analyzers (TMA). As an improvement, the mean CTE (Coefficient of Thermal Expansion) values are evaluated additionally before and after the glass transition.

Read more

Vorhersage von Materialverhalten unter Brandbedingungen

Auch aus Gründen der Sicherheit ist es sehr wichtig, die Eigenschaften von vermeintlich nicht brennbaren Materialien unter Brandbedingungen zu kennen: Was passiert mit dem Baumaterial? Wie beständig ist die Baukonstruktion? Wir zeigen Ihnen, wie Sie mit Hilfe von Kinetics Neo das Materialverhalten unter Brandbedingungen vorhersagen können.

Read more

Prediction of the Material Behavior under Fire Conditions

For safety reasons, it is very important to know the behavior of supposedly non-combustible materials under fire conditions: What happens with the building material? How durable are the building constructions? We show how to use the Kinetics Neo software to predict the material behavior under fire conditions.

Read more

Why Does My 3D Print Warp and How to Stop It

NETZSCH 3D Printing Ep 5

Dr. Natalie Rudolph explains the basics of shrinkage and warpage of plastic parts and introduces the right analytical instrument to determine the shrinkage potential of different materials. She gives important tips for home users to avoid warpage and curling during the 3D printing process.

Read more

Estimating Warpage of Selective Laser Sintering Parts Using Thermomechanical Analysis


The plastics used in Selective Laser Sintering (SLS) have a higher thermal expansion when compared with other materials. Therefore, it is important to know how the dimensions of an SLS part change at different temperatures during the build and during use. The higher the thermal expansion coefficient, the more prone are the parts to warpage or curling and the build-up of residual stresses. Learn more!

Read more

Smart Thermal Analysis: Measurements Wanted?

Imagine the typical situation in everyday laboratory work: A new sample has to be analyzed, but what are the suitable measurement conditions such as temperature program, sample mass or the right crucible? And what measurement results can be expected? Perhaps such kind of sample was already measured by you in the past ‒ or maybe by NETZSCH. Wouldn’t it help a lot to simply search in a database for thermal analysis? Identify, which is a part of the Proteus® analysis software, is the solution!

Read more

Unique Tool for the Prediction of Product Performance and Processing Behavior under Thermal Expansion Control

The New TMA 402 F3 Hyperion® Polymer Edition Modern products made of polymers are all around us. Polymers are used for everyday products but also for challenging applications. The tricky bit is to assure compatibility when different polymers are joined together. For blends or compounds, such as composite materials, the prediction of material behavior in … Read more