The method of choice to determine thermal conductivity in quality assurance for vacuum insulation is the method described in ISO 8301 and ASTM C518 based on steady-state heat-flow. For referencing this method, a calibration of the instrument with an official thermal conductivity standard reference material (SRM) or a transfer standard is neccessary. For the correct calibration, the standards ISO 8301 and ASTM C518 recommend reference materials, which are similar to the sample to be measrued in terms of their thermal transport properties. The question at this point is:
How Can the Thermal Conductivity of Vacuum Insulation Panels Best Be Determined, Considering That There is No Reference Material Available for Such Low Thermal Conductivities?
Introduction
The objective of manufacturers of vacuum-insulation panels (VIPs) is to achieve the best possible insulation effect in the least possible installation space. To illustrate the insulating properties of vacuum insualtion, a thickness comparison is often carried out with conventional glass wool insulation, polystyrene particle foam (EPS), extruded polystyrene foam (XPS) and/or polyurethane foams; the differences in thickness are significant.
- cold chain management,
- aerospace,
- medical technology,
- household appliances,
- etc.
Calibration of Heat-Flow-Meters with respect to the european product standards for thermal insulation materials and ISO 8301/ASTM C518.
For most insulating materials being used as construction materials today, there are relevant product standards available (e.g. DIN EN 13162 to DIN EN 13171), as well as standards for conformity assessment (DIN EN 13172) specifying quality assurance guidelines for insulating materials. The thermal conductivity is determined, for example, in accordance with ISO 8301 with a stationary method by means of a heat flow meter instrument. This is a method that determines the thermal conductivity of insulating materials with an accuracy of ±3% after calibration on an internationally recognized thermal conductivity reference material (NIST SRM 1450D or IRMM-440). The purpose of the calibration is to ensure that the heat-flow sensors of the instrument deliver precise results for the measuring range that is relevant for the samples. However – per ISO 8301, paragraph 2.4 – the calibration materials should possess thermal transport properties similar to those of the sample to be tested. In comparing the thermal resistance of a one-inch-thick NIST 1450D standard reference material at 20°C (0.8 m²K/W) to the thermal resistance of a vacuum-insulating panel of the same thickness, it can be seen that the thermal resistance of the VIP is eight times (!) higher than that of the reference material. These can no longer be considered to be “similar thermal transport properties”. Heat-flow sensors – even those of very high quality – are to a certain extent non-linear in their measuring range, which is why a calibration is carried out for the heat flow range to be measured.A legitimate question therefore is:
How can the thermal conductivity of vacuum insualtion panels (VIP) be determined if the properties of the available reference materials and those of the products to be measured are so different?
Is it a question of understanding heat-flow? Is it a question on prolonging measurement time?
One possibility would be to measure a vacuum insulation panel by means of absolute thermal conductivity methods (e.g. a guarded hot-plate method), determine its thermal conductivity and then calibrate with exactly that sample. It would then have to be ensured, however, that this internal reference material remains stable over a very long time and that the internal pressure of the vacuum insulation panel does not change, since ultimately, the stability of the calibration – according to European standards for insulating materials – must be checked daily and it must be documented that the calibration remains within a tolerance band of ±1%. We therefore should not only take the thermal conductivity and thermal resistance into account, but also start comparing the measurement conditions with each other. Wouldn’t it be more relevant, in terms of practice, to establish similarity of the measurement conditions and not similarity of the materials? This brings us to the approach which leads the VIP manufacturer to the desired results: In our first approximation, let us look at the heat flow occurring in a vacuum insulation panel with a thickness of 20 mm at the time of the measurement with a mean test temperature of 14°C and a temperature gradient of 20 K. The consideration is based on the following equation:


Determining the Conditions for an Alternative Calibration
How can the heat flow during calibration now be adjusted to the heat flow which is to be measured later? Changing the thickness of a reference material is only possible to a limited extent since the materials are only available in one thickness. One possibility would to be stack the reference samples for calibration, in order to increase the thermal resistance and thickness, respectively. Then one runs the risk, however, of creating undefined contact resistances between the samples in the stack, which again results in increased measurement uncertainty. To avoid this, the temperature gradient can be adjusted: We solve the above-mentioned equation for the gradient and, for a heat flow of 3.8 W/m², obtain:
Higher Temperature Gradient in Quality Assurance Measurement
We therefore increase the gradient to 30 K:

Verification of the Theory with a Practical Example
In order to substantiate the theory of adjusting the calibration to the actual heat flow, we look at a series of measurements on different vacuum insulation panels. First, figure 1 presents the results from a screening test on different thicknesses with the following parameters:
- Mean measurement temperature: 14°C
- Temperature gradient: 20 K
- Defined pressure: 17 kPa
- Calibration: calibration with standard reference material 1450D,
- Gradient: 20 K

- 7.50 W/m²
- 5.00 W/m²
- 3.75 W/m²
- 1. 6 K
- 2. 4 K
- 3. 3 K



- Mean measurement temperature: 14°C
- Defined pressure: 17 kPa
- Temperature gradient:
- for 10-mm samples: 20 K
- for 20-mm samples: 30 K
- for 25-mm samples: 40 K
- for 35-mm samples: 40 K
- for 45-mm samples: 40 K
- Calibration: Underlying calibrations as appropriate for the current heat flow in the three classes mentioned above

It’s very useful. Flat-plate Thermal Conductivity Tester, to determine the thermal conductivity of various fabrics, quilting products, and other heat insulation materials. For more information, please click on https://www.testextextile.com/product/flat-plate-thermal-conductivity-tester-tf130/
Great instrumentation to improve clothing comfort!